This article was downloaded by:
On: 23 January 2011
Access details: Access Details: Free Access
Publisher Taylor \& Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 3741 Mortimer Street, London W1T 3JH, UK

Journal of Coordination Chemistry
Publication details, including instructions for authors and subscription information:
http://www.informaworld.com/smpp/title \sim content=t713455674

SYNTHESIS, CHARACTERIZATION AND REACTIVITY OF NOVEL COORDINATION COMPOUNDS OF Pd(II) AND Pt(II) WITH PHENYL-2PYRIDINYL ACETYLENE X-RAY STRUCTURE OF trans- $\{\mathrm{Pt}[(0-$ $\left.\left.\left.\mathrm{NC}_{5} \mathrm{H}_{4}\right) \mathrm{CC}(\mathrm{Ph})\right] \mathrm{Cl}_{2}\left(\mathrm{SEt}_{2}\right)\right\}$
 Adriana C. Aiubab; Nara R. Basso ${ }^{\text {a }}$; Osvaldo L. Casagrande Jr ${ }^{\text {a }}$; Jairton Dupont ${ }^{\text {a }}$; Manfredo Hörner ${ }^{\text {b }}$;

 Adaílton J. Bortoluzzi'; Cacilia Maichle-Mössmer ${ }^{\text {c }}$${ }^{\text {a }}$ Grupo de Catálise, Instituto de Química, UFRGS, Porto Alegre, RS, Brazil ${ }^{\text {b }}$ Departamento de Química, UFSM, Santa Maria, RS, Brazil ${ }^{\text {c Institut für Anorganische Chemie, Universität Tübingen, }}$ Tübingen, Germany

To cite this Article Aiub, Adriana C. , Basso, Nara R. , Casagrande Jr, Osvaldo L. , Dupont, Jairton , Hörner, Manfredo , Bortoluzzi, Adaílton J. and Maichle-Mössmer, Cacilia(1996) 'SYNTHESIS, CHARACTERIZATION AND REACTIVITY OF NOVEL COORDINATION COMPOUNDS OF Pd(II) AND Pt(II) WITH PHENYL-2-PYRIDINYL ACETYLENE X-RAY STRUCTURE OF trans $\left.-\left\{\mathrm{Pt}\left[\left(O-\mathrm{NC}_{5} \mathrm{H}_{4}\right) \mathrm{CC}(\mathrm{Ph})\right] \mathrm{Cl}_{2}\left(\mathrm{SEt}_{2}\right)\right\}\right\}^{\prime}$, Journal of Coordination Chemistry, 40: 1, 35-44
To link to this Article: DOI: 10.1080/00958979608022844
URL: http://dx.doi.org/10.1080/00958979608022844

PLEASE SCROLL DOWN FOR ARTICLE

```
Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf
This article may be used for research, teaching and private study purposes. Any substantial or
systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or
distribution in any form to anyone is expressly forbidden.
The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.
```


SYNTHESIS, CHARACTERIZATION AND REACTIVITY OF NOVEL COORDINATION COMPOUNDS OF Pd(II) AND Pt(II) WITH PHENYL-2-PYRIDINYL ACETYLENE X-RAY STRUCTURE OF trans- $\left\{\mathbf{P t}\left[\left(o-\mathrm{NC}_{5} \mathbf{H}_{4}\right) \mathbf{C}=\mathbf{C}(\mathbf{P h})\right] \mathrm{Cl}_{2}\left(\mathbf{S E t}_{2}\right)\right\}$

ADRIANA C. AIUB, ${ }^{\text {a }}$ NARA R. BASSO, ${ }^{a}$ OSVALDO L. CASAGRANDE JR, ${ }^{\text {a,* }}$ JAIRTON DUPONT, ${ }^{\text {a, } *}$ MANFREDO HÖRNER, ${ }^{\text {b }}$ ADAÍLTON J. BORTOLUZZI ${ }^{b}$ and CACILIA MAICHLE-MÖSSMER ${ }^{c}$
${ }^{\text {a }}$ Grupo de Catálise, Instituto de Química, UFRGS, Av. Bento Goņ̧alves, 9500 91501970 Porto Alegre, RS, Brazil; ${ }^{\text {b Departamento de Química, UFSM, } 97111-900 \text { Santa }}$ Maria, RS, Brazil; 'Institut für Anorganische Chemie, Universität Tübingen, D-72076 Tübingen, Germany

(Received 13 November 1995; Revised 22 February 1996; In final form 13 March 1996)

Abstract

The reaction of phenyl-2-pyridinyl acetylene (1) with $\left[\mathrm{MCl}_{2}\left(\mathrm{SEt}_{2}\right)\right]$ ($\left.\mathrm{M}=\mathrm{Pd}, \mathrm{Pt}\right)$ affords $\{\mathrm{M}[(\mathrm{o}-$ $\left.\left.\left.\mathrm{NC}_{5} \mathrm{H}_{4}\right) \mathrm{C}=\mathrm{C}(\mathrm{Ph})\right]\left(\mathrm{SEt}_{2}\right) \mathrm{Cl}_{2}\right\}(\mathrm{M}=\mathrm{Pd}, \mathrm{Pt})(\mathbf{2 a - b})$ in almost quantitative yield. The reaction of $\mathbf{2 b}$ with nucleophiles such as water and diethylamine lead to nucleophilic addition of these molecules to the activated $\mathrm{C}=\mathrm{C}$ bond to produce $\left\{\mathrm{Pt}\left(c i s-\left(0-\mathrm{NC}_{5} \mathrm{H}_{4}\right) \mathrm{CH}_{2} \mathrm{C}(\mathrm{O})\left(\mathrm{Ph}_{3}\right)\right] \mathrm{Cl}_{2}\left(\mathrm{SEt}_{2}\right)\right\}(3)$ and $\{\mathrm{Pt}[(c i s-(\mathrm{o}-$ $\left.\left.\mathrm{NC}_{5} \mathrm{H}_{4}\right) \mathrm{CH}=\mathrm{C}\left(\mathrm{Ph}_{\mathrm{h}}\right)\left(\mathrm{NEt}_{2}\right)\right] \mathrm{Cl}_{2}\left(\mathrm{HNEt}_{2}\right)$ (4), respectively. The reaction of 1 with equimolar amounts of $\mathrm{Na}_{2} \mathrm{PdCl}_{4}$ yields the cyclopalladated complex $\left\{\mathrm{Pd}\left[\left(0-\mathrm{NC}_{5} \mathrm{H}_{4}\right)(\mathrm{Cl}) \mathrm{C}=\mathrm{C}(\mathrm{Ph})\right](\mu-\mathrm{Cl})\right\}_{2}(\mathbf{5})$. On the other hand, only products resulting from the hydrolysis of the $\mathrm{C}=\mathrm{C}$ bond are found in the reaction of 1 with $\mathrm{K}_{2} \mathrm{PtCl}_{4}$. The X-ray structure determination of 2 b shows a monoclinic system, space group $\mathrm{P} 2_{1} / n$, with $a=9.083$ (2), $b=11.238$ (2), $c=17.913$ (3) $\AA, \mathrm{b}=93.00(2)^{\circ}, V=1826 \AA^{3}, \mathrm{Z}=4$, $\mathrm{D}_{\mathrm{x}}=1.947 \mathrm{~g} . \mathrm{cm}^{3}, \mathrm{R}=0.062$ and $R w=0.075$ for the unique reflections and parameters.

Keywords: platinum; palladium; heterosubstituted alkyne; nucleophilic addition; crystal structure

INTRODUCTION

Transition-metal complexes enable nucleophilic addition reactions to $\mathrm{C}=\mathrm{C}$ and $\mathrm{C}=\mathrm{C}$ bonds as one of the most broadly applicable methodologies for the preparation

[^0]of new organometallic complexes and their application in synthetic organic chemistry. ${ }^{1}$ It is assumed that these reactions proceed via coordination of the unsaturation to the electrophilic transition metal center. followed by addition of the nucleophile to the coordinated multiple bond. We have previously demonstrated that reactions of heterosubstituted alkynes and olefins with nucleophiles, in the presence of $\mathrm{Pt}(\mathrm{II})$ and $\mathrm{Pd}(\mathrm{II})$ compounds, are strongly dependent on the nature of the heteroatoms attached to the unsaturated C-C bond. ${ }^{2-3}$ In this manuscript we present full details of the reaction of phenyl-2-pyridinyl acetylene coordinated to $\mathrm{Pd}(\mathrm{II})$ and $\mathrm{Pt}(\mathrm{II})$ with nucleophiles.

EXPERIMENTAL

General

All reactions were performed in Schlenk-type flasks under oxygen- and water-free argon. Solvents were dried and distilled under argon, tetrahydrofuran and n -hexane over sodium benzophenone ketyl, dichloromethane and chloroform over $\mathrm{P}_{2} \mathrm{O}_{5}$, and methanol over $\mathrm{CaO} .{ }^{1} \mathrm{H}$ NMR spectra were recorded at $200.13 \mathrm{MHz},{ }^{13} \mathrm{C}$ NMR spectra at 50.32 MHz on a Varian Gemini - VXR 200 MHz instrument, externally referenced to TMS. IR spectra were recorded on a Mattson 3020 FTIR spectrophotometer. Elemental analyses were performed by the 'Central Analítica do IQ-UFRGS (Brazil)'.

Starting materials

$\mathrm{Na}_{2} \mathrm{PdCl}_{4}$ was purchased from Aldrich and the trans- $\left[\mathrm{MCl}_{2}\left(\mathrm{SEt}_{2}\right)_{2}\right]$ complexes ($\mathrm{M}=\mathrm{Pd}, \mathrm{Pt}$) were synthesized as described in the literature. ${ }^{4}$ Phenyl-2-pyridinyl acetylene (1) was synthesized in $85-90 \%$ yield by the reaction of 2- bromopyridine with phenyl acetylene in the presence of catalytic amounts of $\left[\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ and $\mathrm{Cul} .{ }^{5}$ All other reagents were obtained from commercial sources (Aldrich or Merck) and were used as received.

Synthesis of $\left\{\mathbf{P d}\left[\left(0-\mathrm{NC}_{5} \mathbf{H}_{4}\right) \mathrm{C} \equiv \mathbf{C}(\mathbf{P h})\right]\left(\mathrm{SEt}_{2}\right) \mathrm{Cl}_{2}\right\}$ (2a)
Phenyl-2-pyridinyl acetylene ($0.11 \mathrm{~g}, 0.61 \mathrm{mmol}$) was added to a solution of $\left[\mathrm{PdCl}_{2}\left(\mathrm{SEt}_{2}\right)_{2}\right](0.20 \mathrm{~g}, 0.56 \mathrm{mmol})$ in THF $(20 \mathrm{~mL})$. The reaction mixture was stirred under reflux for 16 h . The solvent was concentrated to $c a .3 \mathrm{~mL}$ and then hexane (40 mL) was added, yielding an orange-yellow solid, that was recovered by filtration, washed with hexane $(3 \times 30 \mathrm{~mL})$ and then dried in vacuo. Yield,
$0.215 \mathrm{~g}(86 \%)$. Anal. Calcd. for $\mathrm{C}_{17} \mathrm{Cl}_{2} \mathrm{H}_{19} \mathrm{NPdS}(\%): \mathrm{C}, 45.85 ; \mathrm{H}, 4.30 ; \mathrm{N}, 3.15$; Pd 23.80. Found: C, 45.60; H, 4.22; N, 3.10; Pd 23.50. IR (KBr pellets): $2223 \mathrm{~cm}^{-1}(\mathrm{~V} \mathrm{C} \equiv \mathrm{C}) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): 8.74\left(\mathrm{~d}, 1 \mathrm{H},{ }^{3} J_{\mathrm{HH}}=5.6 \mathrm{~Hz}, o-\mathrm{Py}\right) ; 7.70$, $7.60,7.40$ and $7.20\left(4 \mathrm{~m}, 8 \mathrm{H}, \mathrm{CH}\right.$ aromatic); $2.81\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right) ; 1.47$ $\left(\mathrm{t}, 6 \mathrm{H},{ }^{3} J_{\mathrm{HH}}=7.3 \mathrm{~Hz}, \mathrm{CH}_{3}\right){ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): 152.2(\mathrm{CH}-1-\mathrm{Py}) ; 144.7$ (Cipso-Py); 137.9 (CH-3-Py); 131.9 (CH-o-Ph); 129.6 (CH-p-Ph); 128.2 (CH-m-Ph); 127.1 (CH-4-Py); 124.0 (CH-2-Py); 121.3 (Cipso-Ph); 93.7 and $86.7(\mathrm{C} \equiv \mathrm{C}) ; 76.1$ and $75.4\left(\mathrm{CH}_{2}\right) ; 13.0$ and $12.8\left(\mathrm{CH}_{3}\right)$.

Synthesis of $\left.\left\{\mathrm{Pt}\left[0-\mathrm{NC}_{5} \mathrm{H}_{4}\right) \mathrm{C} \equiv \mathrm{C}(\mathrm{Ph})\right]\left(\mathrm{SEt}_{2}\right) \mathrm{Cl}_{2}\right\}$ (2b)

Complex 2b was obtained using a similar procedure to that described for 2a. Yield, $0.221 \mathrm{~g}(92 \%)$. Anal Calcd. for $\mathrm{C}_{17} \mathrm{Cl}_{2} \mathrm{H}_{19} \mathrm{NPtS}(\%): 38.20 ; \mathrm{H}, 3.59$; N , 2.62; Pt 36.51. Found: C, 38.17; H, 3.56; N, 2.58; Pt 36,40. IR (KBr pellets) $2221 \mathrm{~cm}^{-1}(\nu \mathrm{C} \equiv \mathrm{C})$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): 8.71(\mathrm{~m}, 1 \mathrm{H}, \mathrm{o}-\mathrm{Py}), 7.73-7.21(\mathrm{~m}, 7 \mathrm{H}$, aromatic), 2.96 and $2.56\left(2 \mathrm{~m}, 4 \mathrm{H}, \mathrm{SCH}_{2}\right), 1.37\left(\mathrm{t}, 6 \mathrm{H},{ }^{3} J_{\mathrm{HH}}=7.4 \mathrm{~Hz}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR (CDCl_{3}): 153.1 (CH-1-Py); 145.4 (Cipso-Py); 138.2 (CH-3-Py); 132.4 ($\mathrm{CH}-o-\mathrm{Ph}$); 130.3 ($\mathrm{CH}-p-\mathrm{Ph}$); 130.0 ($\mathrm{CH}-m-\mathrm{Ph}$); 128.7 (CH-4-Py); 124.8 (CH-2-Py); $122.0(\mathrm{Cipso-Ph}) ; 98.5$ and $87.2(\mathrm{C} \equiv \mathrm{C}) ; 30.8\left(\mathrm{SCH}_{2}\right) ; 12.8\left(\mathrm{CH}_{3}\right)$.

Synthesis of $\left\{\mathrm{Pt}\left[\right.\right.$ cis- $\left.\left.\left(0-\mathrm{NC}_{5} \mathrm{H}_{4}\right) \mathrm{CH}_{2} \mathrm{C}(\mathrm{O})\left(\mathrm{Ph}^{2}\right)\right] \mathrm{Cl}_{2}\left(\mathrm{SEt}_{2}\right)\right\}$ (3)

Water ($4.0 \mathrm{~mL}, 222.0 \mathrm{mmol}$) was added to a solution of $\mathbf{2 b}(0.10 \mathrm{~g}, 0.10 \mathrm{mmol})$ in chloroform (15 mL) and the reaction mixture was stirred under reflux for 3 days. The resulting yellow solution was concentrated to $c a .4 \mathrm{~mL}$ and hexane (20 mL) was added yielding 3 as a dark yellow solid, that was recovered by filtration and dried in vacuo. Yield, $0.085 \mathrm{~g}(81 \%)$. Anal. Calcd. for $\mathrm{C}_{17} \mathrm{Cl}_{2} \mathrm{H}_{21} \mathrm{NOPtS}(\%)$: C, 36.90; H, 3.82; N 2.53; Pt, 35.32 Found: C, 36.75; H, 3.80; N, 2.51; Pt 35.20. IR (KBr pellets): $1756 \mathrm{~cm}^{-1}(\mathrm{~V} \mathrm{C}=\mathrm{O}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): 195.1(\mathrm{C}=\mathrm{O}) ; 157.6$ (Cipso-Py); 152.3 (CH-1-Py); 138.2 (CH-3-Py); 136.0 (Cipso-Ph); 133.1 ($\mathrm{CH}-o-\mathrm{Ph}$); 129.1 ($\mathrm{CH}-p-\mathrm{Ph}) ; 128.7(\mathrm{CH}-m-\mathrm{Ph}) ; 127.9$ ($\mathrm{CH}-4 \mathrm{Py}) ; 123.7$ (CH-2-Py); $48.5\left(\mathrm{CH}_{2}\right) ; 31.8$ and $30.1\left(\mathrm{CH}_{2} \mathrm{~S}\right) ; 12.7$ and $12.2\left(\mathrm{CH}_{3}\right)$.

Synthesis of $\left\{\mathrm{Pt}\left[\left(\mathbf{c i s}-\left(0-\mathrm{NC}_{5} \mathrm{H}_{4}\right) \mathrm{CH}=\mathbf{C}(\mathbf{P h})\left(\mathrm{NEt}_{2}\right)\right] \mathrm{Cl}_{2}\left(\mathrm{HNEt}_{2}\right)\right\}\right.$ (4)

Complex 4 was obtained using a similar procedure to that described for 3 , the volume of diethylamine used was $10.0 \mathrm{~mL}(100.0 \mathrm{mmol})$. Yield, $0.103 \mathrm{~g}(91 \%)$. Anal. Calcd. for $\mathrm{C}_{21} \mathrm{Cl}_{2} \mathrm{H}_{31} \mathrm{~N}_{3} \mathrm{Pt}(\%) ; \mathrm{C}, 42.64 ; \mathrm{H}, 5.28 ; \mathrm{N} 7.10 ; \mathrm{Pt}, 32.98$. Found: C, $42.59 ; \mathrm{H}, 5.22 ; \mathrm{N}, 7.08$; Pt 32.70. IR (KBr pellets): $3196 \mathrm{~cm}^{-1}(\mathrm{vN}-\mathrm{H})$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}: 8.50(\mathrm{~m}, 1 \mathrm{H}\right.$, o-Py), $7.68-7.18(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ph}), 6.97(\mathrm{~s}, 1 \mathrm{H}$,
$\mathrm{C} \equiv \mathrm{CH}), 6.80\left(\mathrm{t}, 1 \mathrm{H},{ }^{3} J_{\mathrm{HH}}=6.5 \mathrm{~Hz}\right.$, aromatic), $6.02\left(\mathrm{~d}, 1 \mathrm{H},{ }^{3} J_{\mathrm{HH}}=7.9 \mathrm{~Hz}\right.$, aromatic), $3.65,3.18,2.87$ and $2.58\left(4 \mathrm{~m}, 8 \mathrm{H}, \mathrm{CH}_{2}\right), 1.63-1.08\left(\mathrm{~m}, 12 \mathrm{H}, \mathrm{CH}_{3}\right)$.

Synthesis of $\left\{\mathbf{P d}\left[\left(\mathbf{C}(\mathbf{P h})=\mathbf{C}(\mathbf{C l})\left(0-\mathrm{NC}_{5} \mathbf{H}_{4}\right)\right](\mu-\mathrm{Cl})\right\}_{2}(\mathbf{5})\right.$

To a solution of $\mathrm{Na}_{1} \mathrm{PdCl}_{4}(0.50 \mathrm{~g}, 1.70 \mathrm{mmol})$ in methanol (50 mL), phenyl-2pyridnyl acetylene $(0.30 \mathrm{~g}, 1.70 \mathrm{mmol})$ in 10 mL of methanol was added. The reaction mixture was stirred under methanol reflux for 22 h . The formed orange precipitate was recovered by filtration and chromatographed in silica gel using $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ as eluent. The resulting orange solution was concentrated under reduced pressure to ca. 3.0 mL . Addition of hexane (50 mL) afforded an orange solid which was recovered by filtration, washed with hexane $(3 \times 25 \mathrm{~mL})$ and dried in vacuo. Yield, $0.424 \mathrm{~g}(70 \%)$. Anal Calcd. for $\mathrm{C}_{26} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{Cl}_{4} \mathrm{Pd}_{2}$ (\%); C, 43.79; H, 2.54; N, 3.93; Pd, 29.85. Found: C, 43.40; H, 2.80; N, 3.70; Pd, 29.73. IR (KBr pellets): $1612 \mathrm{~cm}^{-1}$ ($\mathrm{VC=}=\mathrm{C}$).

Crystal structure determination [6-12]

Dissolving trans- $\left\{\mathrm{Pt}\left[\left(\mathrm{o}-\mathrm{NC}_{5} \mathrm{H}_{4}\right) \mathrm{C} \equiv \mathrm{C}\left(\mathrm{Ph}^{2}\right)\right] \mathrm{Cl}_{2}\left(\mathrm{SEt}_{2}\right)\right\}$ in a minimum of acetone and allowing slow diffusion of pentane into the yellow solution, at room temperature, produced yellow crystals of the complex. A suitable crystal $(0.10 \times 0.10 \times 0.2 \mathrm{~mm})$ was mounted on an Enraf-Nonius CAD4 diffractometer using graphite monochromated $\mathrm{MoK} \alpha$ radiation. The structure was solved by direct methods (SHELX86; Sheldrick, 1986) and refined with anisotropic displacement parameters (VAXSDP, version 3.0, 1986). The H atoms were calculated at ideal positions and used for calculation of the structure factors only. The DIFABS absorption correction was applied after isotropic refinement with $\mathrm{T}_{\max }=1.1013, \mathrm{~T}_{\min }=0.7753$ and $\mathrm{T}_{\text {aver }}=0.9884$. The crystallographic parameters were obtained by automatic centering of 25 reflections. The $\omega / 2 \theta$ scan technique was employed to measure the intensities for 6902 reflections. Unit cell dimensions were determined by least-squares refinement of the setting angles of 25 reflections with values for 2θ between 3 and 31°. Table I contains all the relevant crystallographic parameters for the structure of $\mathbf{2 b}$.

TABLE I X-ray crystallographic parameters of trans-\{ $\left.\operatorname{Pt}\left[\left(0-\mathrm{NC}_{5} \mathrm{H}_{4}\right) \mathrm{C} \equiv \mathrm{C}(\mathrm{Ph})\right] \mathrm{Cl}_{2}\left(\mathrm{SEt}_{2}\right)\right]$

	Crystal parameters
Molecular formula	$\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{Cl}_{2} \mathrm{NPtS}$
Formula mass	535.41
Crystal system	Monoclinic
Space group	P_{2} / n

TABLE I (Continued)

	Crystal parameters
$\mathrm{a}(\AA)$	$9.083(2)$,
$\mathrm{b}(\AA)$	$11.238(2)$,
$\mathrm{c}(\AA)$	$17.913(3) \AA$
$\beta\left({ }^{\circ}\right)$	93.0112
$\mathrm{~V}\left(\AA^{3}\right)$	1826.0
Z	4
$\mathrm{D}_{x}\left(\mathrm{~g} . \mathrm{cm}^{3}\right)$	1.947
$\mathrm{~F}(000)$	1024
	Data collection parameters
$\mathrm{MoK}_{\alpha}(\AA)$	$\lambda=0.70930$
$\mathrm{~T}(\mathrm{~K})$	223
Reflections collected	6902
Independent reflections	$3570\left[\mathrm{R}_{\mathrm{int}}=0.023\right]$
Reflections observed	$3570\left(\mathrm{I}>3 \sigma_{(0)}\right)$
$\mu\left(\mathrm{cm}^{-1}\right)$	81.655
	Refinement parameters
Parameters	200
Extinction coefficient	$1.5732 .10^{-9}$
R	0.062
$R w$	0.075
Δ / σ	0.001

RESULTS AND DISCUSSION

Reaction of the alkyne 1 with $\mathrm{MCl}_{2}(\mathrm{SEt})_{2}(\mathrm{M}=\mathrm{Pd}$ or Pt$)$ in THF, under reflux, produces the air stable complexes $\mathbf{2 a}$ and $\mathbf{2 b}$ in almost quantitative yield (Scheme 1). The structure of these compounds has been assigned on the basis of their IR, NMR (${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$) spectra and elemental analysis (see experimental section). In the IR spectra of these compounds the band corresponding to the $v(\mathrm{C} \equiv \mathrm{C})$ stretching frequency is relatively close to that of $\mathbf{1}\left(2225 \mathrm{~cm}^{-1}\right)$, indicating that the C -C triple bond is not η^{2}-coordinated to the metal center. The structure of $\mathbf{2 b}$ has been determined by X-ray diffraction analysis and the results are presented below.

SCHEME 1

Crystal structure studies of 2b

Atomic coordinates and thermal parameters of the non-hydrogen atoms are given in Table II. Selected bond lengths and angles are listed in Table III.

TABLE II Atomic positional fractional parameters ($\times 10^{4}$) and equivalent isotropic temperature factors $\left(\AA^{2} \times 10^{3}\right)$

	x / a	y / b	z / c	$B_{e q}{ }^{\ddagger}$
Pt	$0.25647(6)$	$0.21395(5)$	$0.10315(3)$	$2.166(8)$
$\mathrm{Cl}(1)$	$0.4821(4)$	$0.1656(4)$	$0.0589(2)$	$3.00(7)$
$\mathrm{Cl}(2)$	$0.0322(4)$	$0.2670(4)$	$0.1452(3)$	$3.78(8)$
S	$0.2397(5)$	$0.0424(4)$	$0.1685(2)$	$3.17(8)$
$\mathrm{N}(11)$	$0.263(1)$	$0.373(1)$	$0.0474(6)$	$2.4(2)$
$\mathrm{C}(1)$	$0.440(2)$	$0.445(1)$	$0.1355(9)$	$2.9(3)$
$\mathrm{C}(2)$	$0.531(2)$	$0.426(1)$	$0.1890(8)$	$2.6(3)$
$\mathrm{C}(3)$	$0.398(2)$	$0.046(2)$	$0.235(1)$	$4.8(4)$
$\mathrm{C}(4)$	$0.378(3)$	$0.142(2)$	$0.292(1)$	$5.4(5)$
$\mathrm{C}(5)$	$0.287(2)$	$-0.082(1)$	$0.108(1)$	$3.8(4)$
$\mathrm{C}(6)$	$0.157(3)$	$-0.105(2)$	$0.054(1)$	$6.8(6)$
$\mathrm{C}(12)$	$0.173(2)$	$0.390(1)$	$-0.0144(8)$	$2.9(3)$
$\mathrm{C}(13)$	$0.168(2)$	$0.494(1)$	$-0.0544(8)$	$2.9(3)$
$\mathrm{C}(14)$	$0.259(2)$	$0.586(1)$	$-0.0292(8)$	$2.7(3)$
$\mathrm{C}(15)$	$0.349(2)$	$0.572(1)$	$0.0348(9)$	$3.1(3)$
$\mathrm{C}(16)$	$0.350(2)$	$0.464(1)$	$0.0709(8)$	$2.7(3)$
$\mathrm{C}(21)$	$0.628(2)$	$0.394(1)$	$0.2487(8)$	$2.7(3)$
$\mathrm{C}(22)$	$0.655(2)$	$0.468(2)$	$0.3097(9)$	$3.4(3)$
$\mathrm{C}(23)$	$0.759(2)$	$0.432(2)$	$0.3667(9)$	$4.2(4)$
$\mathrm{C}(24)$	$0.822(2)$	$0.323(2)$	$0.3653(9)$	$3.9(4)$
$\mathrm{C}(25)$	$0.800(2)$	$0.251(2)$	$0.305(1)$	$3.5(3)$
$\mathrm{C}(26)$	$0.702(2)$	$0.285(2)$	$0.247(1)$	$3.9(3)$

${ }^{\ddagger} B_{\text {eq }}$ is defined as $4 / 3\left[a^{2} B_{11}+b^{2} B_{22}+c^{2} B_{33}+a b(\cos \gamma) B_{12}+\ldots\right]$

TABLE III Selected interatomic distances (\AA) and bond angles $\left({ }^{\circ}\right)$ for $\mathbf{2 b}$

	Distances (\AA)				
$\mathrm{Pt}-\mathrm{Cl}(1)$	$2.301(4)$	$\mathrm{C}(2)-\mathrm{C}(21)$	$1.412(3)$		
$\mathrm{Pt}-\mathrm{Cl}(2)$	$2.287(4)$	$\mathrm{C}(21)-\mathrm{C}(22)$	$1.38(2)$		
$\mathrm{Pt}-\mathrm{S}$	$2.264(4)$	$\mathrm{C}(22)-\mathrm{C}(23)$	$1.41(2)$		
$\mathrm{Pt}-\mathrm{N}(11)$	$2.060(1)$	$\mathrm{C}(23)-\mathrm{C}(24)$	$1.35(3)$		
$\mathrm{C}(16)-\mathrm{C}(1)$	$1.400(2)$	$\mathrm{C}(24)-\mathrm{C}(25)$	$1.36(2)$		
$\mathrm{C}(1)-\mathrm{C}(2)$	$\mathrm{C}(25)-\mathrm{C}(26)$	$1.38(2)$			
$\mathrm{N}(11)-\mathrm{C}(16)$	$1.250(3)$	$\mathrm{C}(14)-\mathrm{C}(13)$	$1.38(2)$		
$\mathrm{C}(16)-\mathrm{C}(15)$	$1.34(2)$	$\mathrm{C}(13)-\mathrm{C}(12)$	$1.37(2)$		
$\mathrm{C}(15)-\mathrm{C}(14)$	$1.37(2)$	$\mathrm{C}(12)-\mathrm{N}(11)$	$1.36(2)$		
$\mathrm{N}(11)-\mathrm{Pt}-\mathrm{S}$	Angles $\left.{ }^{\circ}\right)$				
$\mathrm{N}(11)-\mathrm{Pt}-\mathrm{Cl}(1)$	$177.0(3)$	$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(16)$	$174.0(2)$		
$\mathrm{N}(11)-\mathrm{Pt}-\mathrm{Cl}(2)$	$89.3(3)$	$\mathrm{C} 1(1)-\mathrm{Pt}-\mathrm{S}$	$93.6(1)$		
$\mathrm{Pt}-\mathrm{N}(11)-\mathrm{C}(1)$	$89.0(3)$	$\mathrm{Cl}(1)-\mathrm{Pt}-\mathrm{Cl}(2)$	$178.3(1)$		
$\mathrm{C}(12)-\mathrm{N}(11)-\mathrm{C}(16)$	$90.6(6)$	$\mathrm{C} 1(2)-\mathrm{Pt}-\mathrm{S}$	88.1		
$\mathrm{C}(2)-\mathrm{C}(21)-\mathrm{C}(22)$	$118.0(1)$	$\mathrm{N}(11)-\mathrm{C}(16)-\mathrm{C}(1)$	$117(1)$		
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(21)$	$122(1)$	$\mathrm{C}(3)-\mathrm{S}-\mathrm{C}(5)$	$101.6(9)$		

The platinum atom is almost square-planar with $\mathrm{N}(1)$ and S in a trans arrangement (Figure 1). The two chloride atoms are also trans. The substituted-pyridinylligand is perpendicular to the plane of the ' $\mathrm{PtCl}_{2} \mathrm{~S}$ ' fragment.

The $\mathrm{C}(1) \cdots \mathrm{Pt}$ and $\mathrm{C}(2) \cdots \mathrm{Pt}$ distances are 3.123 and $3.722 \AA$, respectively, indicating a weak interaction of the platinum atom with the unsaturated carbon $\mathrm{C}(1) .{ }^{13}$ It is important to note that platinum- η^{2}-alkynes complexes ${ }^{14,15}$ usually have $\mathrm{C}-\mathrm{Pt}$ bond lengths between $2.230-2.330 \AA$. It is significant that the $\mathrm{C}(1)-\mathrm{C}(2)$ distance is $0.042 \AA$ longer than the triple bond distance ($1.208 \AA$) found in phenylacetylene. ${ }^{16}$ These facts indicate strong conjugation involving the $\mathrm{C}(1)-\mathrm{C}(2)$ bond, the pyridine and phenyl rings.

Reactions of water, diethylamine and chloride with 1 bound to $\operatorname{Pt}(\mathrm{II})$ and Pd(II)

The reaction of a large excess of water with complex $2 b$ gives compound $\mathbf{3}$ in a good yield (81%). The disappearance of the $v(\mathrm{C} \equiv \mathrm{C})$ bond and the appearance of the characteristic stretching vibration of the $\mathrm{C}=\mathrm{O}$ group ($\mathrm{v}_{\mathrm{CO}}=1756 \mathrm{~cm}^{-1}$) in the IR spectrum of $\mathbf{3}$ is a strong indication that the $\mathrm{C} \equiv \mathrm{C}$ bond has been oxidized by $\mathrm{H}_{2} \mathrm{O}$. Compound $\mathbf{2 b}$ also reacts with other nucleophiles such as diethylamine. ${ }^{2}$ to yield complex 4. The structural assignment of 4 was based on its spectro-

FIGURE 1 A perspective view of the compound $\mathbf{2 b}$ with the atomic numbering scheme. Displacement ellipsoids are shown at the 50% probability level for non- H atoms.
scopic data and has been confirmed by an X-ray diffraction analysis. ${ }^{2}$ The observed trans-stereochemistry of the exocyclic $\mathrm{C}=\mathrm{C}$ bond (with respect to the NEt_{2} group and the proton) suggest that this reaction proceeds via an overall concerted HNEt_{2} addition to the $\mathrm{C} \equiv \mathrm{C}$ bond. This reaction can be understood in terms of oxidative addition of HNEt_{2} to $\mathbf{2 b}$ leading to $\mathrm{Pt}^{\text {IV }}$ complex. Insertion of the $\mathrm{C} \equiv \mathrm{C}$ bond into the $\mathrm{Pt}-\mathrm{NEt}_{2}$ bond would give four-membered platinacycle that, followed by reductive elimination, affords compound 4 (Scheme 2).

In contrast to $\mathbf{2 b}$, compound $\mathbf{2 a}$ is very stable and does not react with water or diethylamine under various reaction conditions. However, addition of equimolar amounts of 1 to a methanolic solution of $\mathrm{Na}_{2} \mathrm{PdCl}_{4}$, under reflux, yields compound 5 as a yellow insoluble microcrystalline solid (Scheme 3). The structure of compound 5 has been deduced from its CHN analysis and IR spectrum. Moreover the ${ }^{1} \mathrm{H}$ NMR spectrum of the monomeric derivative of 5 (prepared in situ by the addition of $\mathrm{Py}-\mathrm{d} 5$ to the CDCl_{3} suspension of 5 in an NMR tube) indicated the presence of phenyl and pyridinyl aromatic protons. It is important to note that the regio- and stereochemistry at the exocyclic $\mathrm{C}=\mathrm{C}$ bond is as usually obtained from chloropalladation of propargyl amines, ${ }^{17}$ thioetheres ${ }^{18}$ and simple alkynes. ${ }^{19}$ Indeed, these reactions are assumed to proceed via external Cl^{-}attack on the $\mathrm{C} \equiv \mathrm{C}$ bond to form the most stable five-membered cyclopalladated complex. It is significant that the similar $\mathrm{Pt}(\mathrm{II})$ compound has not been detected from the reaction of 1 with $\mathrm{K}_{2} \mathrm{PtCl}_{4}$; only a complex mixture of organometallic products ${ }^{\dagger}$ were observed, probably arising from hydrolysis of the $\mathrm{C} \equiv \mathrm{C}$ bond (see above).

It is important to note that alkyne 1 does not react with nucleophiles in the absence of $\mathrm{Pt}(\mathrm{II})$ and $\mathrm{Pd}(\mathrm{II})$ compounds, clearly indicating that the $\mathrm{C} \equiv \mathrm{C}$ bond is activated by the metal center. The nature of the transition metal also plays an important role on the selectivity of the reaction of 1 with $\mathrm{Na}_{2} \mathrm{PdCl}_{4}$ and $\mathrm{K}_{2} \mathrm{PtCl}_{4}$. Thus, chloropalladation of the alkyne occurs easily, whereas chloroplatination has not been observed with alkyne 1. This different behaviour can be attributed to the more easily access to $\mathrm{Pt}^{\mathrm{IV}}$ compounds via oxidative addition of the nucleophilic than for Pd^{20}

3

4

CHART 1

[^1]

SCHEME 2

SCHEME 3

Acknowledgments

We acknowledge partial financial support from CNPq, CAPES, DAAD, FAPERGS and VW-Stiftung (Germany).

References

[1] J.P. Collman, L.S. Hegedus, J.R. Norton and G.F. Finke, Principles and Applications of Organotransition Metal Chemistry. (Mill Valley, University Science Books, 1987) pp 409-415 and 859-879.
[2] J. Dupont, O.L. Casagrande Jr., A.C. Aiub, M. Hörner and J. Beck, Polyhedron, 13, 2583 (1994).
[3] J. Dupont, R.A.P. Halfen, F.K. Zinn and M. Pfeffer, J. Organomet. Chem., 484, C8, (1994).
[4] G.K. Anderson and M. Lin, Inorg. Synth., 28, 61 (1990).
[5] K. Sonogasshira, Y. Tohda and N. Hagihara, Tetrahedron Lett., 50, 4467 (1975).
[6] G.M. Sheldrick, SHELXS 86, Program for Crystal Structure Solution, University of Göttingen, Germany (1986).
[7] C.K. Johnson, ORTEP - A Thermal Ellipsoid Plot Programm, Oak Ridge National Laboratory, Tennessee (1965).
[87 CAD4, Automatic Four Circle Diffractometer ENRAF-NONIUS, Delft, Holland.
[9] B.A. Frenz, The Enraf-Nonius CAD4 SDP - A Real-Time for Concurrent X-Ray Data Collection and Crystal Structure Solution. Computing in Crystallography, edited by R. Schenk, H. Olthof-Hazekamp, van Koningsveld and G.C. Bassi, pp. 64-71, Delft Univ. Press (1978).
[10] B.A. Frenz and Associates Inc., College Station, Texas 77840, USA and ENRAF-NONIUS, Delft, Holland, Structure Determination Package VAXSDP, Version 3.0 (1986).
[11] N. Walker and D. Stuart, Acta Cryst., A39, 158 (1983).
[12] W.H. Zachariansen, Acta Cryst., 16, 1139 (1963).
[13] J. Formiés, E. Lalinde, F. Martínez, M.T. Moreno and A.J. Welch, J. Organomet. Chem., 271 (1993); O.M. Abu-Salah and C.B. Knobler, J. Organomet. Chem., C10 (1986).
[14] J.R. Berenguer, J. Forniés, E. Lalinde, F. Martinez, E. Urriolabeitia and A.J. Welch, J. Chem. Soc. Dalton Trans., 1291 (1994).
[15] M. Forniés, E. Lalinde, A. Martín and M.T. Moreno, J. Chem.Soc. Dalton Trans., 135 (1994).
[16] A.P. Cox, I.C. Ewart and W.M. Stigliani, J. Chem. Soc. F. Trans. II, 504 (1975).
[17] T. Yukawa, S. Tsutsumi, Inorg. Chem., 1968, 7, 1458.
[18] J. Dupont, N.R. Basso and M.R. Meneghetti, Polyhedron, 15, 2299 (1996).
[19] J.E. Bäckvall, Y.I.M. Nilsson and R.G.P. Gatti, Organometallics, 4242 (1995).
[20] F.R. Hartley, The Chemistry of Palladium and Platinum, Applied Science, London, (1973).

[^0]: * Authors for correspondence; e-mail: osvaldo@if.ufrgs.br.

[^1]: \dagger The IR spectrum of this mixture of products shows $v_{\mathrm{C}=\mathrm{O}}$ at $1720 \mathrm{~cm}^{-1} 8$ and $v_{\mathrm{C}-\mathrm{H}}$ at 2875,2910 and $2940 \mathrm{~cm}^{-1}$.

